2020
DOI: 10.33448/rsd-v9i1.1915
|View full text |Cite
|
Sign up to set email alerts
|

Uso de modelos de séries temporais para previsões de safras de milho no estado de Mato Grosso

Abstract: The Mato Grosso State is the main producer of corn of the Brazil and its production has been increasing every year. In this sense, is very important to gain information about future production to planning and monitoring of the corn crops. In this way, the main aim of this paper is to compare the performance showed by the forecast models of time series and to choose the best model. The historical data of corn crop from 1976/1977 to 2017/2018 was obtained with CONAB (The Brazilian National Supply Company). Then,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…Logo, realizar previsões dos indicadores da cultura do algodão do estado que é o principal produtor se configura como uma atividade muito importante. Segundo Silva et al (2019), prever indicadores de culturas agrícolas é essencial para o planejamento de safras e para o processo de tomada de decisões em geral.…”
Section: Introductionunclassified
“…Logo, realizar previsões dos indicadores da cultura do algodão do estado que é o principal produtor se configura como uma atividade muito importante. Segundo Silva et al (2019), prever indicadores de culturas agrícolas é essencial para o planejamento de safras e para o processo de tomada de decisões em geral.…”
Section: Introductionunclassified
“…Making it a useful tool in reducing errors, costs, and processing time. Like other authors, they used statistical modeling techniques to forecast corn crops in the state of Mato Grosso, as they realized the need to predict events such as rain or drought, based on past situations (Silva et al, 2019).…”
Section: Introductionmentioning
confidence: 99%