Low-cost RGB-D cameras are increasingly used in several research fields including human-machine interaction, safety, robotics, biomedical engineering and even Reverse Engineering applications. Among the plethora of commercial devices, the Intel RealSense cameras proved to be among the best suitable devices, providing a good compromise between cost, ease of use, compactness and precision. Released on the market in January 2018, the new Intel model RealSense D415 has a wide acquisition range (i.e. ~160-10000 mm) and a narrow field of view to capture objects in rapid motion. Given the unexplored potential of this new device, especially when used as a 3D scanner, the present work aims to characterize and to provide metrological considerations on the RealSense D415. In particular, tests are carried out to assess the device performances in the near range (i.e. 100-1000 mm). Characterization is performed by integrating the guidelines of the existing standard (i.e. the German VDI/VDE 2634 part 2 normative) with a number of literature-based strategies. Performance analysis is finally compared against latest close-range sensors, thus providing a useful guidance for researchers and practitioners aiming to use RGB-D cameras in Reverse Engineering applications.