We propose a four-stage hierarchical resource allocation scheme for the
downlink of a large-scale small-cell network in the context of orthogonal
frequency-division multiple access (OFDMA). Since interference limits the
capabilities of such networks, resource allocation and interference management
are crucial. However, obtaining the globally optimum resource allocation is
exponentially complex and mathematically intractable. Here, we develop a
partially decentralized algorithm to obtain an effective solution. The three
major advantages of our work are: 1) as opposed to a fixed resource allocation,
we consider load demand at each access point (AP) when allocating spectrum; 2)
to prevent overloaded APs, our scheme is dynamic in the sense that as the users
move from one AP to the other, so do the allocated resources, if necessary, and
such considerations generally result in huge computational complexity, which
brings us to the third advantage: 3) we tackle complexity by introducing a
hierarchical scheme comprising four phases: user association, load estimation,
interference management via graph coloring, and scheduling. We provide
mathematical analysis for the first three steps modeling the user and AP
locations as Poisson point processes. Finally, we provide results of numerical
simulations to illustrate the efficacy of our scheme.Comment: Accepted on May 15, 2014 for publication in the IEEE Transactions on
Wireless Communication