-We investigated the utility of three-dimensionally cultured hepatocytes (spheroids) without feeder cells (Sph(f-)) for the prediction of drug-induced liver injury (DILI) in humans. Sph(f-) and spheroids cultured on feeder cells (Sph(f+)) were exposed to the hepatotoxic drugs flutamide, diclofenac, isoniazid and chlorpromazine at various concentrations for 14 days, and albumin secretion and cumulative leakages of toxicity marker enzymes, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and γ-glutamyl transpeptidase (γ-GTP), were measured. The cumulative AST, LDH or γ-GTP leakages from Sph(f-) were similar to or greater than those from Sph(f+) for all drugs tested, although ALT leakages showed no consistent difference between Sph(f+) and Sph(f-). In the case of Sph(f-), significant correlations among all the toxicity markers except for γ-GTP were observed. As regards the drug concentrations causing 1.2-fold elevation of enzyme leakage (F 1.2 ), no consistent difference between Sph(f+) and Sph(f-) was found, although several F 1.2 values were undetermined, especially in Sph(f+). The IC 50 of albumin secretion and F 1.2 of AST leakage from Sph(f-) were equal to or lower than those of Sph(f+) for all the tested drugs. These results indicate that feeder cells might contribute to resistance to hepatotoxicity, suggesting DILI could be evaluated more accurately by using Sph(f-). We suggest that long-term exposure of Sph(f-) to drugs might be a versatile method to predict and reproduce clinical chronic toxicity, especially in response to repeated drug administration.