Bacterial and viral infections often present with similar symptoms. Etiologic misdiagnosis can alter the trajectory of patient care, including antibiotic overuse. A host-protein signature comprising tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), interferon gamma-induced protein-10 (IP-10), and C-reactive protein (CRP) was validated recently for differentiating bacterial from viral disease. However, a focused head-to-head comparison of its diagnostic performance against other biomarker candidates for this indication was lacking in patients with respiratory infection and fever without source. We compared the signature to other biomarkers and prediction rules using specimens collected prospectively at two secondary medical centers from children and adults. Inclusion criteria included fever > 37.5 °C, symptom duration ≤ 12 days, and presentation with respiratory infection or fever without source. Comparator method was based on expert panel adjudication. Signature and biomarker cutoffs and prediction rules were predefined. Of 493 potentially eligible patients, 314 were assigned unanimous expert panel diagnosis and also had sufficient specimen volume. The resulting cohort comprised 175 (56%) viral and 139 (44%) bacterial infections. Signature sensitivity 93.5% (95% CI 89.1–97.9%), specificity 94.3% (95% CI 90.7–98.0%), or both were significantly higher (all p values < 0.01) than for CRP, procalcitonin, interleukin-6, human neutrophil lipocalin, white blood cell count, absolute neutrophil count, and prediction rules. Signature identified as viral 50/57 viral patients prescribed antibiotics, suggesting potential to reduce antibiotic overuse by 88%. The host-protein signature demonstrated superior diagnostic performance in differentiating viral from bacterial respiratory infections and fever without source. Future utility studies are warranted to validate potential to reduce antibiotic overuse.Electronic supplementary materialThe online version of this article (10.1007/s10096-018-3261-3) contains supplementary material, which is available to authorized users.