In this study, oyster (Pleurotus ostreatus) mushroom was cultivated from hazelnut branches (HB) (Corylus avellana L.), hazelnut husk (HH), wheat straw (WS), rice husk (RH) and spent coffee grounds (CG). Hazelnut branch waste was used for the first time in oyster mushroom cultivation. In the study, mushrooms were grown by preparing composts from 100 to 50% mixtures of each waste type. Yield, biological activity, spawn run time, total harvesting time and mushroom quality characteristics were determined from harvested mushroom caps. In addition, chemical analysis of lignocellulosic materials (extractive contents, holocellulose, α-cellulose, lignin and ash contents) were carried out as a result of mushroom production and their changes according to their initial amounts were examined. In addition, the changes in the structure of waste lignocellulosic materials were characterized by FTIR analysis. As a result of the study, 172 g/kg yield was found in wheat straw used as a control sample, while it was found as 255 g/kg in hazelnut branch pruning waste. The highest spawn run time (45 days) was determined in the compost prepared from the mixture of hazelnut husk and spent coffee ground wastes. This study showed that HB wastes can be used for the cultivation of oyster mushroom (P. ostreatus). After mushroom cultivation processes, holocelulose and α-cellulose content rates decreased while ash contents increased. FTIR spectroscopy indicated that significant changes occurred in the wavelengths regarding cellulose, hemicellulose and lignin components. Most significant changes occurred in 1735, 1625, 1510, 1322 and 1230 wavelengths.