2023
DOI: 10.29303/jppipa.v9i10.5032
|View full text |Cite
|
Sign up to set email alerts
|

Utilization of Deep Learning for Mapping Land Use Change Base on Geographic Information System: A Case Study of Liquefaction

Ajun Purwanto,
Paiman

Abstract: This study aims to extract buildings and roads and determine the extent of changes before and after the liquefaction disaster. The research method used is automatic extraction. The data used are Google Earth images for 2017 and 2018. The data analysis technique uses the Deep Learning Geography Information System. The results showed that the extraction results of the built-up area were 23.61 ha and the undeveloped area was 147.53 ha. The total length of the road before the liquefaction disaster occurred was 35.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?