With growing concerns for greenhouse gas emissions, alkali-activated materials (AAMs) have received significant attention due to the benefit of low carbon footprint. In the process of promoting large-scale and commercialized applications of AAMs, one of the most significant concerns is the long-term durability. This work presents a critical review on the durability performance of alkali-activated system. At the material level, this work reviews factors influencing the mass transport properties of AAMs, and effects of a number of factors such as chemical activators, raw materials, curing regimes, and exposure environments on the durability of AAMs subjected to both physically and chemically induced deterioration. At the structure level, the durability performance of structures made from AAMs, including beam, slab, box culvert, and repairing materials and protection coating under extreme conditions are reviewed. The review indicates that AAMs have potentials to manufacture durable materials by appropriate selection of raw materials, chemical activators and optimization of mixing design. Furthermore, perspectives are proposed for the further study on the durability of AAMs at both material and structure levels. The related results are of interest to the research community as well as to the stakeholders of AAMs industries who seek sustainability in their products.