To investigate possible gender differences in the response of hepatic fatty acids and cytosolic fatty acid-binding capacity to ethanol consumption, both female and male rats (41 days of age) were pair fed liquid diets (with a littermate of the same sex) for 28 days. The diets contained 36% of energy either as ethanol or as additional carbohydrate. After ethanol feeding, the hepatic concentration of fatty acids increased 155% in females (P less than 0.01), whereas there was only a trend for an increase (22%) in males. This was associated with a much smaller increase of cytosolic fatty acid-binding capacity in females (58%) than in males (161%). Whereas the ethanol-induced increase in fatty acid-binding capacity provided an ample excess of binding sites for the fatty acids in males, the increase in females was barely sufficient for the binding of the large increase of fatty acids produced by ethanol in the females. The cytosolic protein responsible for this binding, the liver fatty acid-binding protein of the cytosol (L-FABPc), also promotes esterification of the fatty acids. In keeping with the postulated role of this protein, the ethanol-induced increases in hepatic triacylglycerols, phospholipids, and cholesterol esters were smaller in females than in males. The gender difference in cholesterol esters was associated with parallel changes in acyl-CoA transferase activity. A possible implication of the relatively small and most likely inadequate increase in liver fatty acid-binding capacity and fatty acid esterification during alcohol consumption in the females is that under these circumstances the risk for development of a potentially deleterious accumulation of fatty acids in the liver is increased, thereby contributing to the enhanced vulnerability of females to alcohol-induced hepatotoxicity.