Environmental, economic and social changes of any significant proportions cannot take place without a major shift in the manufacturing sector. In today's manufacturing processes, economic efficiency is realised through high volumes with the use of specialised machine tools. Change in society, such as in the form of mobility and digitisation, requires a complete overhaul in terms of thinking in the manufacturing industry. Moreover, the manufacturing industry contributes over 19 % to the world's greenhouse gas emissions. As a consequence of these issues, a demand for sustainable solutions in the production industry is increasing. In particular, the concept of "cost" in manufacturing processes and thus the "system boundaries" within the production of the future has to be changed. That is, a great number of aspects to the machine tool and production technology industries can be improved upon in order to achieve a more sustainable production environment. Within this chapter, the focus lies on microsystem technology enhanced modular machine tool frames, adaptive mechatronic components, as well as on internallycooled cutting tools. An innovative machine tool concept has been developed recently, featuring a modular machine tool frame using microsystem technology for communication within the frame, which allows for a high level of flexibility. Furthermore, add-on upgrading systems for outdated machine tools-which are particularly relevant for developing and emerging countries-are poised to gain in importance in the upcoming years. The system described here enables the accuracy of outdated machine tools to be increased, thus making these machine tools comparable to modern machine tool systems. Finally, the cutting process requires solutions for dry machining, as the use of cooling lubricants is environmentally damaging and a significant cost contributor in machining processes. One such solution is the use of internally cooled cutting tools.