The present investigation deals with the development of AA 5052-based metal matrix composites (MMCs) by utilizing industrial wastes, spent alumina catalyst, chrome-containing leather waste, and grinding sludge as a reinforcement material. The chrome-containing leather waste has been utilized to extract the collagen powder, which is a form of chromium oxide. The presence of Al2O3, Fe2O3, and SiO2 phases in the spent alumina catalyst and grinding sludge ball-milled powder encourages its utilization as reinforcement material (in the form of Cr) for the development of MMCs. The stir-casting technique has been used to develop the aluminum-based MMC with waste spent alumina catalyst, chrome-containing leather waste, and grinding sludge. Further, results revealed that the matrix material mechanical properties compressive strength, tensile strength, and hardness were significantly increased by 12.93%, 5.34%, and 31.81% after adding spent alumina catalyst, Cr, and grinding sludge with the weight percentage (wt.%) of 4.5%, 1.5%, and 4.5%, respectively, but the toughness was reduced. The microstructural investigation indicated the uniform distribution of reinforcing elements spent alumina catalyst (4.5 wt.%), GS (4.5%), and Cr (1.5%) in the aluminum matrix material. Further, the influence of given reinforcement elements on the thermal expansion and corrosion weight loss properties of aluminum alloy matrix material has also been investigated.