Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recently, dense wavelength division multiplexing passive optical networks (DWDM-PONs) have become a considerable choice for 5G and beyond fronthaul implementations. Formerly, we have proposed a full-duplex bidirectional DWDM-PON architecture convenient for those implementations and analyzed the combined dual impact of four-wave mixing (FWM) and stimulated Raman scattering (SRS) nonlinear impairments on the proposed architecture. Meanwhile, a detailed literature analysis showed us that the combined quadruple impact of self phase modulation (SPM), cross phase modulation (XPM), FWM and SRS on the performance of bidirectional DWDM-PONs have never been researched up to now. In this paper, quadruple impact of SPM, XPM, FWM and SRS on the performance of both uplink channels (ULCs) and downlink channels (DLCs) of the formerly proposed DWDM-PON has been analyzed with simulations. Simulations have been performed in O-band region for ULCs and in C-band region for DLCs of 2 × 15- and 2 × 63-channel DWDM-PONs having 12.5 GHz, 25 GHz, 50 GHz, 100 GHz equally-spaced channels. The quadruple impact of optical nonlinear impairments on the DWDM-PON performance has been analyzed with signal-to-crosstalk ratio (SXR) simulations performed under varying channel input powers and channel lengths. Results show that under the quadruple nonlinear impact reliable bidirectional transmission with an SXR over 23 dB can be achieved for channel input powers below 0.58 mW and 0.16 mW in 2 × 15- and 2 × 63-channel DWDM-PONs, respectively, for all channel spacing values and 25 km transmission lengths. Moreover, results also imply that variations in channel lengths do not significantly affect SXR at both ULCs and DLCs of 2 × 15- and 2 × 63-channel DWDM-PONs for lengths exceeding 50 km. The thorough analysis presented in the paper will give a new insight for analysis of conventional and next generation PONs.
Recently, dense wavelength division multiplexing passive optical networks (DWDM-PONs) have become a considerable choice for 5G and beyond fronthaul implementations. Formerly, we have proposed a full-duplex bidirectional DWDM-PON architecture convenient for those implementations and analyzed the combined dual impact of four-wave mixing (FWM) and stimulated Raman scattering (SRS) nonlinear impairments on the proposed architecture. Meanwhile, a detailed literature analysis showed us that the combined quadruple impact of self phase modulation (SPM), cross phase modulation (XPM), FWM and SRS on the performance of bidirectional DWDM-PONs have never been researched up to now. In this paper, quadruple impact of SPM, XPM, FWM and SRS on the performance of both uplink channels (ULCs) and downlink channels (DLCs) of the formerly proposed DWDM-PON has been analyzed with simulations. Simulations have been performed in O-band region for ULCs and in C-band region for DLCs of 2 × 15- and 2 × 63-channel DWDM-PONs having 12.5 GHz, 25 GHz, 50 GHz, 100 GHz equally-spaced channels. The quadruple impact of optical nonlinear impairments on the DWDM-PON performance has been analyzed with signal-to-crosstalk ratio (SXR) simulations performed under varying channel input powers and channel lengths. Results show that under the quadruple nonlinear impact reliable bidirectional transmission with an SXR over 23 dB can be achieved for channel input powers below 0.58 mW and 0.16 mW in 2 × 15- and 2 × 63-channel DWDM-PONs, respectively, for all channel spacing values and 25 km transmission lengths. Moreover, results also imply that variations in channel lengths do not significantly affect SXR at both ULCs and DLCs of 2 × 15- and 2 × 63-channel DWDM-PONs for lengths exceeding 50 km. The thorough analysis presented in the paper will give a new insight for analysis of conventional and next generation PONs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.