Batch experiments were performed to investigate the effect of several environmental factors on atenolol (ATL) degradation efficiency, including catalyst crystal phase (anatase TiO 2 , rutile TiO 2 , and mixed phase), catalyst dosage, UV-LED wavelength and intensity, co-existing anions, cations, and pH. The mixed phase (2 g/L) exhibited the best photocatalytic activity at 365 nm, with ATL (18.77 µM) completely oxidized within 1 h. These results suggest that: (i) The mixed phase exhibits the highest activity due to its large specific surface area and excellent charge separation efficiency.(ii) ATL can be effectively degraded using mixed phase TiO 2 combined with UV-LED technology and the ATL degradation efficiency could reach 100% for 60 min; (iii) ATL photodegradation was more effective under 365 nm UV-LED than 254 nm, which was caused by the effect of light-induced charge separation; (iv) the ATL Degradation efficiency(De) decreased with an increase in initial ATL concentrations; and (v) co-existing anions and cations had different effects on the ATL De, mainly by changing the concentration of hydroxyl radicals. Considering that UV-LED is more energy-saving and environmentally friendly, and commercial TiO 2 is cheap and easy to obtain, our research provides feasibility for practical application.