Humic acid (HA) has complex molecular structure and is capable of adsorption, ion exchange, and chelation with organic and inorganic pollutants in water bodies, worsening water quality and jeopardizing human health and ecological environment. How to effectively remove HA from water is one of the research focuses of this paper. In this study, the UV-activated sodium perborate (SPB) synergistic system (UV/SPB) was established to eliminate HA in water. The effects of initial HA concentration, SPB dose, and initial pH value on the HA elimination were determined, and the main mechanisms of the synergy and HA degradation were explored. The outcomes show that the HA elimination ratio by the sole UV and only SPB system were only 0.5% and 1.5%, respectively. The HA removal of UV/SPB reached 88.8%, which can remove HA more effectively than other systems. Free radical masking experiment proved that hydroxyl radical produced by SPB activation is the main active substance for HA removal. The results of UV-vis absorption spectrum, absorbance ratio, specific UV absorbance, and excitation–emission matrix spectroscopy verified that the UV/SPB system can effectively decompose and mineralize HA.