Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Short spectral scan times of preferably less than 1 min in the UV region are an important prerequisite for modern spectroradiometers to reflect short-term solar irradiance radiation variations that can occur as a result of fast changes in cloud cover and/or cloud optical depth. Two different types of fast measuring spectroradiometers for solar UV irradiance are compared in a first field campaign: (1) the UV spectroradiometer on filter model basis (UV-SPRAFIMO) and (2) the modified version of the spectroradiometer SPECTRO 320D by Instrument Systems. The UV-SPRAFIMO instrument combines a filter radiometer with five narrowband (FWHMϷ2.0 to 2.7 nm) filters centered at fixed wavelengths in the UV-B and UV-A regions with an advanced neural network-based model. Up to 5 measurements/s can be taken concurrently in the five wavelength channels. After averaging the measurements over preselectable time intervals, the measured irradiances are converted by the neural network model into a full spectrum from 280 to 450 nm at arbitrary wavelength steps (у0.05 nm). The SPECTRO 320D spectroradiometer consists of a grating double monochromator with a cooled photomultiplier tube (PMT) receiver. The instrument version run by Deutscher Wetterdienst (DWD) is thermostatted and equipped with a Schreder type cosine diffuser as the entrance optics. A spectral scan from 290 to 450 nm with a selected 0.2-nm wavelength step takes less than 30 s. The two spectroradiometers are used in a field campaign at Izana (Tenerife Island) at a height of 2440 m above sea level (ASL) to compare measured spectral and integral values of solar irradiance. Results of that comparison and the instruments' characteristics are discussed. This first field comparison shows that due to the fast measurements regime, cloud effects on the measured spectra can be appreciably reduced. The campaign shows an acceptable agreement between the spectra measured by both instruments. It also reveals some issues for further improvements of the instrument design. Some of the improvements, such as a better cosine diffuser for the UV-SPRAFIMO and an output trigger signal used to record start and stop time of the spectral scan of the SPECTRO 320D instrument, are implemented after the field campaign.
Short spectral scan times of preferably less than 1 min in the UV region are an important prerequisite for modern spectroradiometers to reflect short-term solar irradiance radiation variations that can occur as a result of fast changes in cloud cover and/or cloud optical depth. Two different types of fast measuring spectroradiometers for solar UV irradiance are compared in a first field campaign: (1) the UV spectroradiometer on filter model basis (UV-SPRAFIMO) and (2) the modified version of the spectroradiometer SPECTRO 320D by Instrument Systems. The UV-SPRAFIMO instrument combines a filter radiometer with five narrowband (FWHMϷ2.0 to 2.7 nm) filters centered at fixed wavelengths in the UV-B and UV-A regions with an advanced neural network-based model. Up to 5 measurements/s can be taken concurrently in the five wavelength channels. After averaging the measurements over preselectable time intervals, the measured irradiances are converted by the neural network model into a full spectrum from 280 to 450 nm at arbitrary wavelength steps (у0.05 nm). The SPECTRO 320D spectroradiometer consists of a grating double monochromator with a cooled photomultiplier tube (PMT) receiver. The instrument version run by Deutscher Wetterdienst (DWD) is thermostatted and equipped with a Schreder type cosine diffuser as the entrance optics. A spectral scan from 290 to 450 nm with a selected 0.2-nm wavelength step takes less than 30 s. The two spectroradiometers are used in a field campaign at Izana (Tenerife Island) at a height of 2440 m above sea level (ASL) to compare measured spectral and integral values of solar irradiance. Results of that comparison and the instruments' characteristics are discussed. This first field comparison shows that due to the fast measurements regime, cloud effects on the measured spectra can be appreciably reduced. The campaign shows an acceptable agreement between the spectra measured by both instruments. It also reveals some issues for further improvements of the instrument design. Some of the improvements, such as a better cosine diffuser for the UV-SPRAFIMO and an output trigger signal used to record start and stop time of the spectral scan of the SPECTRO 320D instrument, are implemented after the field campaign.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.