Ni‐based catalysts supported on TiO2, ZrO2 and SiO2 (in the form of mesoporous Santa Barbara Amorphous 15 (SBA‐15) and amorphous dense nanoparticles), were employed in the steam reforming of glycerol. Each sample was prepared by liquid phase synthesis of the support followed by impregnation with the active phase and calcination at 800 °C or by direct synthesis through flame pyrolysis. Many techniques have been used to assess the physical chemical properties of both the fresh and spent catalysts, such as atomic absorption, N2 adsorption/desorption, XRD, SEM, TEM, temperature‐programmed reduction (TPR), X‐ray photoelectron spectroscopy (XPS), Micro‐Raman and FTIR spectroscopy. The samples showed different textural, structural and morphological properties, as well as different reducibility and thermal resistance depending on the preparation method and support. Some of these properties were tightly bound to catalyst performance, in terms of H2 productivity and stability towards coking and sintering. A key parameter was the metal–support interaction, which strongly depended on the preparation procedure. In particular, the stronger the interaction, the more stable the metallic Ni clusters, which in turn lead to a higher catalytic activity and stability. Surface acidity was also taken into account, in which the nature of the acid sites was differentiated (silanols, titanols or Lewis acid sites). The characterisation of the spent catalysts also allowed us to interpret the deactivation process. The formation of multi‐walled nanotubes was observed for every sample, though it was only in some cases that this led to severe deactivation.