The embryo expresses paternal Ags foreign to the mother and therefore has been viewed as an allograft. It has been shown that anergic T cells generated by blocking of the CD28/B7 costimulatory pathway with anti B7-1 and anti B7-2 mAbs can be transferred as suppresser cells to prevent allograft rejection. Little is known, however, about the in vivo function of anti-B7-treated T cells after their transfer into abortion-prone mice in the maintenance of materno-fetal tolerance. In the present study, abortion-prone CBA/J females mated with DBA/2 males were administered anti-B7-1 and anti-B7-2 mAbs on day 4 of gestation (murine implantation window). The anti-B7-treated T cells subsequently were adoptively transferred into abortion-prone CBA/J mice. We demonstrated that costimulation blockade with anti-B7 mAbs at the time of implantation resulted in altered allogeneic T cell response and overcame increased maternal rejection to the fetus in the CBA/J×DBA/2 system. The transferred anti-B7-treated T cells appeared to be regulatory, decreasing responsiveness and generating clonal deviation in maternal recipient T cells. The transferred CFSE-labeled T cells were found to reside in the spleen and uterine draining lymph nodes, and a few were localized to the materno-fetal interface of the maternal recipient. Our findings suggest that the anti-B7-treated T cells not only function as potent suppresser cells, but also exert an immunoregulatory effect on the maternal recipient T cells, which cosuppresses maternal rejection to the fetus. This procedure might be considered potentially useful for fetal survival when used as an immunotherapy for human recurrent spontaneous abortion.