The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4 + T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Nature MediciNedegrees of protection in non-human primate models [31][32][33][34][35] . Some approaches have used messenger RNA (mRNA) as a vector, resulting in the induction of polyfunctional antibody responses comparable to those induced by protein immunization, as well as efficient T cell responses [36][37][38] . Altogether, the evidence so far accumulated suggests that no individual factor will determine the ultimate success of a bNAb-inducing HIV-1 vaccine, which probably requires a combination of efficient precursor B cell priming, optimization of Env design and presentation, and sustained heterologous Env boosting.
ResultsDesign of an env-gag VLP mRNA vaccine platform. Critical advancements in mRNA technology over the past two decades 39,40 have enabled the development of mRNA-based vaccine platforms, which have recently shown remarkable effectiveness against ). Taking advantage of the versatility of mRNA as an expression system, we designed a novel vaccine platform by combining a series of features that we postulated to be critical for the elicitation of protective antibody responses. These include, first, the use of mRNA as a vehicle in order to instruct host cells to endogenously express membrane-bound viral glycoproteins and decorate them with native N-linked glycosylation; second, the use of full-length or minimally truncated HIV-1 Envs that do not expose distractive immunodominant epitopes, unlike truncated soluble trimers; third, co-expression of Env with Gag in order to promote the in vivo production of virus-like particles (VLPs), which closely mimic native viral particles produced by HIV-1 infection; fourth, initial priming with an Env capable of engaging germline bNAb precursors; and last, intensive heterologous boosting with tier-2 Envs from different clades in order to selectively expan...