We present the results obtained using the equipment available at the Center for collective use “Composition, structure, properties of structural and functional alloys” NRC “Kurchatov Institute” — CRISM “Prometey”: DIL 805A/D (TA Instruments) and DIL 402C (Netzsch) dilatometers. Dilatometric analysis which provides determination of the temperature coefficient of linear expansion and the temperature of phase transitions, as well as evaluation of the transformation kinetics, can also allow simulation of heat treatment modes to identify the size of the former austenitic grain using vacuum etching and conduct the research aimed at improving the technology of thermal and thermomechanical processing (TMO) of steels and alloys. The experiments were carried out both in vacuum and in dynamic helium atmosphere. The main methodological difficulties that we have faced with are described. For steels of martensite and martensite-bainite class (38KhMA, 38KhN3MFA, 20Kh3NMFA) conditions of vacuum etching in the chamber of the dilatometer are specified. The efficiency of the method for martensite-bainite steels in determination of the grain size compared to traditional methods of etching is deminstrated. The effect of thermodeformation parameters on the size of austenitic grain is estimated. When modeling the heat treatment modes by the dilatometric method, the microstructure of KhN55MVTs nickel alloy was also analyzed. Changes in the size and morphology of the grain structure at different stages of heat treatment are revealed. The obtained results were used to adjust the current modes of heat treatment and obtain a uniform fine-grained structure. The combined application of dilatometric and metallographic analyzes after vacuum etching of the material decreases the production costs attributed to obtaining the desired microstructure upon thermal and thermomechanical processing of the products and blanks.