The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n=15 sham and n=15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in nVNS group (p < .0005) in bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output.Adding to preclinical work, multiple translational clinical studies also show similar antinociceptive effects of acute (10,(35)(36)(37)(38) and chronic VNS (39).Recent fMRI studies have revealed that nVNS affects brain areas important in pain processing (e.g. the medial thalamus, dorsal ACC, IC, and PFC; (40-43), thus highlighting a potential supraspinal vagal influence on pain perception. Only a single small pilot study (n = 20) has evaluated the neural effects of transcutaneous VNS using auricular "Arnold's nerve" stimulation on experimental pain (36). The results did not show a difference between groups, but a post-hoc analysis of "responders", i.e. subjects (n = 12) with increased pain threshold post-nVNS, showed decreased activation during the application of pain stimuli in the left dorsoposterior insula, ACC, ventromedial PFC, caudate nucleus, and hypothalamus (36). Notably, this study performed continuous transcutaneous auricular VNS during the noxious thermal challenge, possibly confounding the results as emerging literature shows pronociceptive effects during actual VNS, while the antinociceptive effects occur post-VNS (44,45). Taken together, the evidence accumulated to date suggests that VNS alters clinical pain perception, but that VNS must be carefully timed to produce antinociceptive effects.
Study objectivesThe objective of this study was to gain a richer understanding of post-nVNS effects on sensory discriminative neurocircuits, affective pain neurocircuits, and the peripheral autonomic response to noxious thermal stimuli. Our goa...