The redshifted 21-cm signal from the Cosmic Dawn and Epoch of Reionization carries invaluable information about the cosmology and astrophysics of the early Universe. Analyzing data from a sky-averaged 21-cm signal experiment requires navigating through an intricate parameter space addressing various factors such as foregrounds, beam uncertainties, ionospheric distortions, and receiver noise for the search of the 21-cm signal. The traditional likelihood-based sampling methods for modeling these effects could become computationally demanding for such complex models, which makes it infeasible to include physically motivated 21-cm signal models in the analysis. Moreover, the inference is driven by the assumed functional form of the likelihood. We demonstrate how Simulation-Based Inference through Truncated Marginal Neural Ratio Estimation (TMNRE) can naturally handle these issues at a reduced computational cost. We estimate the posterior distribution on our model parameters with TMNRE for simulated mock observations, incorporating beam-weighted foregrounds, physically motivated 21-cm signal, and radiometric noise. We find that maximizing information content by analyzing data from multiple time slices and antennas significantly improves the parameter constraints and enhances the exploration of the cosmological signal. We discuss the application of TMNRE for the current configuration of the REACH experiment and demonstrate its potential for exploring new avenues.