Previous studies showed that opening windows could help with kitchen ventilation in pollutant removal. However, no studies have systematically examined the impacts of window positions on kitchen hood performance, and there is insufficient information on indoor airflow characteristics and pollutant distribution from makeup air through open windows. Therefore, the objective of this study was to use a validated computational fluid dynamics approach with CO2 as an indoor air quality indicator (a surrogate for cooking emissions) to understand the impacts of exhaust flow rate and the window opening position on the flow characteristics, concentration distribution, and capture efficiency (CE) of the hood. We conducted four-point validation tests of the numerical models based on CO2 concentration and temperature measurements under steady-state conditions. The validated models were subsequently used in simulations to understand the effects of six different window opening positions and the two exhaust flow rates on exposure. We found that the CO2 concentration could be better reduced by having windows open at the higher location. Generally, the front windows were more effective with CE>80%, followed by the back and the side windows, respectively. We also found that as the exhaust flow rate increased from 6.72 to 12.16 m3/min, CE reached >75% for all window positions, where the most significant increase was 1.58 times for the lower side window. To sum up, changing the relative position of the window and the exhaust hood could help disperse the incoming airflow from the window, improve the kitchen’s overall ventilation, and reduce pollutant concentration.