A phenomenon that transiently increases the permeability of the cells is known as electroporation. It is the basis for number of the applications in biomedical domains. It is essential to consider requirement of high precision and the overall size of electroporator. The recent decades have seen the development of solid-state power electronic modules. The modules enable generation of high voltage millisecond and nano-second pulses with options to reduce the overall size of the equipment. The selective modules are verified with experimental models and available for commercial usage. While the other modules are still undergoing optimization processes. The generator generates pulses for varying performances. Hence, this paper presents knowledge for different nanosecond and millisecond pulse generating circuits for electroporation purposes. The performance parameters like the width of the pulse, its amplitude are compared for different circuit topologies. The performance analysis of different topologies and their impact on the performance of the electroporation at the cell biology level are considered in this paper.