Ruminants are natural reservoirs of Shiga toxin producing Escherichia coli (STEC), and the STEC can be easily transferred to carcasses during the conversion of animals to meat. Three experiments were conducted to validate the efficacy of lactic acid (4%; LA), peroxyacetic acid (300 ppm; PAA), and hot water (80˚C; HW) for their individual or combined abilities to reduce STEC surrogates on bob veal carcasses pre- and post-chill and through fabrication. In experiment 1, hot carcasses (n=9) were inoculated with a 5-strain cocktail (ca. 8 log CFU/mL) containing rifampicin-resistant surrogate Escherichia coli ( E. coli ; BAA-1427, BAA-1428, BAA-1429, BAA-1430, and BAA-1431) and then treated with HW, LA, or PAA. Carcasses were then chilled (0±1°C; 24 h), split in half, and each side was treated with either LA or PAA. In experiment 2, hot carcasses (n=3) were inoculated and chilled (24 h). After 24 h, the carcasses were split, and each side was treated with either LA or PAA. For experiment 3, carcasses (n=3) were chilled for 24 h, split, inoculated, and treated with either LA or PAA. After chilling, carcasses from all three experiments were fabricated to subprimals and the cut surfaces were sampled to determine the translocation. Experiment 1 showed that LA+LA was the most effective ( P ≤ 0.05) treatment for reducing surrogate E. coli on veal. In experiments 2 and 3, LA and PAA were similar ( P > 0.05) in their abilities to reduce E. coli on chilled veal carcasses. In experiments 1 and 2, all antimicrobial treatments resulted in undetectable levels (< 0.2 log CFU/cm 2 ) of surrogate E. coli on cut surfaces after fabrication, while low levels (1.7 and 1.0 log CFU/cm 2 for LA and PAA, respectively) were observed in experiment 3. Of the antimicrobial interventions utilized, lactic acid was more effective for reducing STEC surrogate populations on veal carcasses, pre- and/or post-chill.