Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Amaç: Bu çalışmada her türlü kırığın bilgisayarlı simülas-yonuna uygun olan ve güvenilir sonuçlar veren gerçekçi bir model yaratıldı. Hastalar ve yöntemler: İleri numune elde edebilmek için plastik bir pelvis modeli kullanıldı. Veriler sağlıklı bir pelvisin bilgisayarlı tomografi taramasından elde edildi. Üç boyutlu plastik pelvis taraması ile geometrik olarak kesin bir model oluşturuldu. Bilgisayarlı tomografi taramalarından elde edilen verilere göre kemikli kısımların materyal özellikleri modifiye edildi. Pelvis farklı segmentlere ayrıldı ve materyal özelliklerinin doğru olması için her segmentte kortikal ve kansellöz kemik maddesinin oranı tayin edildi. Pelvis modelinin doğrulanmasında, tip C pelvis hasarının simülasyonu yapıldı ve sakrum kırığı ve semfizyoliz plaklar ile stabilize edildi. Bu veriler daha önceki kadavra deneylerinden elde edilen veriler ile karşılaştırıldı. Bulgular: Yeni model üzerinde yapılan simülasyona göre, sakrum kırığının fragmanları arasındaki kayma değerleri, kadavra deneylerinde bildirilen değerlere yakındı ve artan gerilme tolere edilebilir aralıkta kaldı. Sonuç: Yeni sonlu eleman pelvis modelimiz, eski modele göre, pelvisi daha doğru yansıtmaktadır. Modelin doğ-rulaması başarılı olduğundan, güvenilir sonuçlar ile bu yöntem her türlü kırığın bilgisayarlı simülasyonu için uygundur.Anahtar sözcükler: Sonlu eleman analizi; kırık tespiti; pelvis kemiği. Objectives:In this study, we aimed to create a realistic model which is suitable for computerized simulation of any kind of fractures and provides reliable results. Patients and methods: We used a plastic pelvic model to construct advanced specimens. The data were retrieved from the computed tomography scans of a healthy pelvis. A geometrically exact model by the means of three-dimensional scanning of the plastic pelvis was obtained. The material properties of the bony parts based on the data retrieved from the computed tomography scans were modified. The pelvis was divided into distinct segments and the proportion of the cortical and cancellous bone substance in each segment were determined to make the material properties accurate. In the validation of the pelvic model, a type C pelvic injury was simulated and the fracture of the sacrum and the symphyseolysis were stabilized with plates. These data were compared with those of previously performed cadaver experiments. Results: Based on the simulation performed on the new model, the shift values between the fragments of the broken sacrum approximated the reported values of our cadaver experiments and also arising strains remained in the tolerable interval. Conclusion: Our new finite element pelvic model represents the pelvis more accurately than the former one. As the validation of the model was successful, it is suitable for computerized simulation of any kind of fractures offering reliable results.
Amaç: Bu çalışmada her türlü kırığın bilgisayarlı simülas-yonuna uygun olan ve güvenilir sonuçlar veren gerçekçi bir model yaratıldı. Hastalar ve yöntemler: İleri numune elde edebilmek için plastik bir pelvis modeli kullanıldı. Veriler sağlıklı bir pelvisin bilgisayarlı tomografi taramasından elde edildi. Üç boyutlu plastik pelvis taraması ile geometrik olarak kesin bir model oluşturuldu. Bilgisayarlı tomografi taramalarından elde edilen verilere göre kemikli kısımların materyal özellikleri modifiye edildi. Pelvis farklı segmentlere ayrıldı ve materyal özelliklerinin doğru olması için her segmentte kortikal ve kansellöz kemik maddesinin oranı tayin edildi. Pelvis modelinin doğrulanmasında, tip C pelvis hasarının simülasyonu yapıldı ve sakrum kırığı ve semfizyoliz plaklar ile stabilize edildi. Bu veriler daha önceki kadavra deneylerinden elde edilen veriler ile karşılaştırıldı. Bulgular: Yeni model üzerinde yapılan simülasyona göre, sakrum kırığının fragmanları arasındaki kayma değerleri, kadavra deneylerinde bildirilen değerlere yakındı ve artan gerilme tolere edilebilir aralıkta kaldı. Sonuç: Yeni sonlu eleman pelvis modelimiz, eski modele göre, pelvisi daha doğru yansıtmaktadır. Modelin doğ-rulaması başarılı olduğundan, güvenilir sonuçlar ile bu yöntem her türlü kırığın bilgisayarlı simülasyonu için uygundur.Anahtar sözcükler: Sonlu eleman analizi; kırık tespiti; pelvis kemiği. Objectives:In this study, we aimed to create a realistic model which is suitable for computerized simulation of any kind of fractures and provides reliable results. Patients and methods: We used a plastic pelvic model to construct advanced specimens. The data were retrieved from the computed tomography scans of a healthy pelvis. A geometrically exact model by the means of three-dimensional scanning of the plastic pelvis was obtained. The material properties of the bony parts based on the data retrieved from the computed tomography scans were modified. The pelvis was divided into distinct segments and the proportion of the cortical and cancellous bone substance in each segment were determined to make the material properties accurate. In the validation of the pelvic model, a type C pelvic injury was simulated and the fracture of the sacrum and the symphyseolysis were stabilized with plates. These data were compared with those of previously performed cadaver experiments. Results: Based on the simulation performed on the new model, the shift values between the fragments of the broken sacrum approximated the reported values of our cadaver experiments and also arising strains remained in the tolerable interval. Conclusion: Our new finite element pelvic model represents the pelvis more accurately than the former one. As the validation of the model was successful, it is suitable for computerized simulation of any kind of fractures offering reliable results.
This chapter describes the application of the finite element (FE) method to bone tissues. The aspects that differ the most between bone and other materials' FE analysis are the type of elements used, constitutive models, and experimental validation. These aspects are looked at from a historical evolution stand point. Several types of elements can be used to simulate similar bone structures and within the same analysis many types of elements may be needed to realistically simulate an anatomical part. Special attention is made to constitutive models, including the use of density-elastic ity relationships made possible through CT-scanned images. Other more complex models are also described that include viscoelasticity and anisotropy. The importance of experimental validation is discussed, describing several methods used by different authors in this challenging field. The use of cadaveric human bones is not always possible or desirable and other options are described, as the use of animal or artificial bones. Strain and strain rate measuring methods are also discussed, such as rosette strain gauges and optical devices.
Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.