Two billion people are infected with Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), worldwide. Ten million to 20 million of the infected individuals develop disease per year. TB is a treatable disease, provided that it is diagnosed in a timely manner. The current TB diagnostic methods are subjective, inefficient, or not cost-effective. Antibody-based blood tests can be used efficiently and cost-effectively for TB diagnosis. A major challenge is that different TB patients generate antibodies against different antigens. Therefore, a multiplex immunoassay approach is needed. We have developed a multiplex panel of 28 M. tuberculosis antigen-coated microbeads. Plasma samples were obtained from over 300 pulmonary TB patients and healthy controls in a country where TB is endemic, Pakistan. Multiplex data were analyzed using computational tools by multivariate statistics, classification algorithms, and cluster analysis. The results of antibody profile-based detection, using 16 selected antigens, closely correlated with those of the sputum-based diagnostic methods (smear microscopy and culture) practiced in countries where TB is endemic. Multiplex microbead immunoassay had a sensitivity and specificity of approximately 90% and 80%, respectively. These antibody profiles could potentially be useful for the diagnosis of nonpulmonary TB, which accounts for approximately 20% of cases of disease. Since an automated, high-throughput version of this multiplex microbead immunoassay could analyze thousands of samples per day, it may be useful for the diagnosis of TB in millions of patients worldwide.More than one-third of the world's population is infected with Mycobacterium tuberculosis (7, 26a). Annually, 10 million to 20 million of these individuals develop clinical symptoms, and about 2 million die of tuberculosis (TB) (4, 17a). The infected host typically mounts a vigorous immune response (25). Nevertheless, 10% of all infections result in active disease within 2 years. Another 10% of cases may experience disease after a latent phase spanning many years (8, 17a). Several Mycobacterium species (e.g., M. tuberculosis, M. bovis, and M. africanum) can infect and cause disease in humans (2, 24). In about 80% of active TB cases, direct involvement of the lung results in pulmonary disease (4a). However, M. tuberculosis can spread to other organs. In approximately 20% of cases, M. tuberculosis may cause nonpulmonary disease in various organ systems (urogenital system, nervous system, digestive system, skeletal system, etc.) with or without the lung involvement (7,18). TB is a treatable disease, provided that a timely and appropriate diagnosis is made (4a). Commonly used sputumbased methods for pulmonary TB diagnosis are subjective, insensitive, and/or inefficient. Furthermore, for the detection of pediatric pulmonary TB, a major limitation is that children often have difficulty producing usable quantities of sputum.Sputum smear acid-fast bacillus (AFB) microscopy is recommended by the World Health Organizatio...