The prostanoid pathway converts polyunsaturated fatty acids (PUFAs) into bioactive lipid mediators, including prostaglandins, thromboxanes and prostacyclins, all of which play vital roles in the immune and reproductive systems in most animal phyla. In crustaceans, PUFAs and prostaglandins have been detected and often associated with female reproductive maturation. However, the presence of prostanoid biosynthesis genes remained in question in these species. In this study, we outlined the prostanoid pathway in the black tiger shrimp Penaeus monodon based on the amplification of nine prostanoid biosynthesis genes: cytosolic phospholipase A2, hematopoietic prostaglandin D synthase, glutathione-dependent prostaglandin D synthase, prostaglandin E synthase 1, prostaglandin E synthase 2, prostaglandin E synthase 3, prostaglandin F synthase, thromboxane A synthase and cyclooxygenase. TBLASTX analysis confirmed the identities of these genes with 51-99% sequence identities to their closest homologs. In addition, prostaglandin F2α (PGF2α), which is a product of the prostaglandin F synthase enzyme, was detected for the first time in P. monodon ovaries along with the previously identified PUFAs and prostaglandin E2 (PGE2) using RP-HPLC and mass-spectrometry. The prostaglandin synthase activity was also observed in shrimp ovary homogenates using in vitro activity assay. When prostaglandin biosynthesis was examined in different stages of shrimp ovaries, we found that the amounts of prostaglandin F synthase gene transcripts and PGF2α decreased as the ovaries matured. These findings not only indicate the presence of a functional prostanoid pathway in penaeid shrimp, but also suggest a possible role of the PGF2α biosynthesis in shrimp ovarian development.