This paper deals with the validation of rain rate and wind speed measurements from the High-Altitude Wind and Rain Airborne Profiler (HIWRAP), which occurred in September 2013 when the NASA Global Hawk unmanned aerial vehicle passed over an ocean rain squall line in the Gulf of Mexico near the North Florida coast. The three-dimensional atmospheric rain distribution and the associated ocean surface wind vector field were simultaneously measured by two independent remote sensing and two in situ systems, namely the ground-based National Weather Service Next-Generation Weather Radar (NEXRAD); the European Space Agency satellite Advanced Scatterometer (ASCAT), and two instrumented weather buoys. These independent measurements provided the necessary data to calibrate the HIWRAP radar using the measured ocean radar backscatter and to validate the HIWRAP rain and wind vector retrievals against NEXRAD, ASCAT and ocean buoys observations. In addition, this paper presents data processing procedures for the HIWRAP instrument, including the development of a geometric model to collocate time-morphed rain rates from the NEXRAD radar with HIWRAP atmospheric rain profiles. Results of the rain rate intercomparison are presented, and they demonstrate excellent agreement with the NEXRAD time-interpolated rain volume scans. In our analysis, we find that HIWRAP produces wind and rain rates that are consistent with the supporting ground and satellite estimates, thereby providing validation of the geolocation, the calibration, and the geophysical retrieval algorithms for the HIWRAP instrument.