2020
DOI: 10.29207/resti.v4i6.2492
|View full text |Cite
|
Sign up to set email alerts
|

Validity Test of Self-Organizing Map (SOM) and K-Means Algorithm for Employee Grouping

Abstract: Managing employee work discipline needs to be done to support the development of an organization. One way to make it easier to manage employee work discipline is to group employees based on their level of discipline. This study aims to group employees based on their level of discipline using the Self Organizing Map (SOM) and K-Means algorithm. This grouping begins with collecting employee attendance data, then processing attendance data where one of them is determining the parameters to be used, then ending by… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 3 publications
0
2
0
2
Order By: Relevance
“…It computes the cluster density and how far the clusters are apart from each other [29]. A higher coefficient value indicates a denser cluster structure and is different from other clusters [18], [30]. Furthermore, the results of clustering were analyzed to understand the characteristics and changes in learning patterns.…”
Section: Clustering Methodsmentioning
confidence: 99%
“…It computes the cluster density and how far the clusters are apart from each other [29]. A higher coefficient value indicates a denser cluster structure and is different from other clusters [18], [30]. Furthermore, the results of clustering were analyzed to understand the characteristics and changes in learning patterns.…”
Section: Clustering Methodsmentioning
confidence: 99%
“…Validasi cluster digunakan untuk mengetahui ketepatan dan kualitas dari hasil analisis cluster [17]. Selain itu, jumlah cluster optimum dapat diperoleh melalui validasi cluster [18]. Setiap objek dapat membentuk cluster sebanyak 2 ≤ K ≤ (N − 1) dengan N merupakan jumlah objek dalam pengamatan [19].…”
Section: Silhouette Coefficientunclassified
“…Sarana dan prasarana sekolah dapat terdiri dari data campuran sehingga, klasterisasi SMA dapat menggunakan metode SKM. Hasil klaster yang didapat harus divalidasi untuk melihat jumlah klaster yang terbaik [8]. Metode validasi klaster yang cocok untuk metode SKM yaitu metode Medoid Shadow Value (MSV) [9].…”
Section: A Pendahuluanunclassified