Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BACKGROUNDWithin the scope of this study, bismuth oxide (Bi2O3) nanoparticles have been synthesized by a simple method, and the usability of these nanoparticles as adsorbents has been investigated. For this purpose, Bi2O3 nanoparticles were synthesized by a chemical method. These particles were characterized by various methods such as Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area, scanning electron microscopy, and X‐ray diffraction. The nature of the synthesized nanoparticles was confirmed by characterization results and the synthesized particles were found to be nanoscale. As a result of the characterization, the average particle diameters and surface areas were found to be 22.24, 32.24 and 49.98 nm, and 5.95, 3.54 and 0.75 m2 g−1 for different calcination temperatures of 105, 250 and 600 °C, respectively. Adsorption parameters such as initial quetiapine concentration, bismuth oxide nanoparticle dosage, temperature, equilibrium contact time, and pH were also studied. Moreover, kinetic, isotherm, and thermodynamics modeling of adsorption have been performed to account for the adsorption mechanism of quetiapine by Bi2O3 nanoparticles.RESULTSThe thermodynamic study has specified that adsorption has been spontaneous and exothermic. The kinetic study has pointed out that a pseudo‐second‐order model (R2 = 0.9853) has been favorable to the data. Furthermore, a Freundlich isotherm model (R2 = 0.8258) has been better fitted to the experimental adsorption results. The maximum adsorption capacity and percentage of adsorption values were 27.38 mg g−1 and 76.81%, respectively.CONCLUSIONThe outcomes demonstrate that synthesized Bi2O3 nanoparticle is an influential adsorbent for removing quetiapine. Also, the obtained results enabled us to estimate the possibility of using Bi2O3 nanoparticles to remove active pharmaceutical ingredients by adsorption. © 2024 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
BACKGROUNDWithin the scope of this study, bismuth oxide (Bi2O3) nanoparticles have been synthesized by a simple method, and the usability of these nanoparticles as adsorbents has been investigated. For this purpose, Bi2O3 nanoparticles were synthesized by a chemical method. These particles were characterized by various methods such as Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area, scanning electron microscopy, and X‐ray diffraction. The nature of the synthesized nanoparticles was confirmed by characterization results and the synthesized particles were found to be nanoscale. As a result of the characterization, the average particle diameters and surface areas were found to be 22.24, 32.24 and 49.98 nm, and 5.95, 3.54 and 0.75 m2 g−1 for different calcination temperatures of 105, 250 and 600 °C, respectively. Adsorption parameters such as initial quetiapine concentration, bismuth oxide nanoparticle dosage, temperature, equilibrium contact time, and pH were also studied. Moreover, kinetic, isotherm, and thermodynamics modeling of adsorption have been performed to account for the adsorption mechanism of quetiapine by Bi2O3 nanoparticles.RESULTSThe thermodynamic study has specified that adsorption has been spontaneous and exothermic. The kinetic study has pointed out that a pseudo‐second‐order model (R2 = 0.9853) has been favorable to the data. Furthermore, a Freundlich isotherm model (R2 = 0.8258) has been better fitted to the experimental adsorption results. The maximum adsorption capacity and percentage of adsorption values were 27.38 mg g−1 and 76.81%, respectively.CONCLUSIONThe outcomes demonstrate that synthesized Bi2O3 nanoparticle is an influential adsorbent for removing quetiapine. Also, the obtained results enabled us to estimate the possibility of using Bi2O3 nanoparticles to remove active pharmaceutical ingredients by adsorption. © 2024 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.