2021
DOI: 10.1016/j.envpol.2020.116073
|View full text |Cite
|
Sign up to set email alerts
|

Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
13
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 19 publications
(14 citation statements)
references
References 39 publications
1
13
0
Order By: Relevance
“…Processes such as calcination (Gu et al 2018), hydrodistillation (Tavares et al 2020), lyophilization (Rubio et al 2020), anaerobic anaerobic digestion (Alrefai et al 2020), extraction (Akond and Lynam 2020), fermentation ( Coimbra et al 2021), enzymatic hydrolysis (Corchado-Lopo et al 2021), hydrothermal liquefaction (Cervi et al 2021), saccharification (Marques and Aguiar-Oliveira 2020), transesterification (Khounani et al 2021b) among others, they are difficult to implement due to the great procedural and technological complexity, which requires greater investment, especially in equipment and infrastructure, making it difficult to implement as a strategy for the use of waste in the Extreme South of Bahia. The simplest processes that facilitate implementation in the region are found in other bioproducts, such as soil corrective using orange peel and sugarcane bagasse (Debernardi-Vázquez et al 2020) for composting, biochar using pie castor bean (Silva et al 2021), sunflower seed (Casoni et al 2019), cherry kernel (Pollard and Goldfarb 2021), filter cake and sugarcane molasses (Bernardino et al 2018;, branches, stems, roots and leaves of trees (Martín et al 2017), oat husk (Srivastava et al 2020), baru endocarp/mesocarp (Rambo et al 2020a;Rambo et al 2020b), coffee and cocoa husks (Milian-Luprón et al 2020) obtained by pyrolysis and briquettes using tree branches, trunks, roots and leaves (Nunes et al 2019;Ponte et al 2019), husk from coconut (Nunes et al 2019) and sugarcane bagasse (Ponte et al 2019) through crushing and compaction.…”
Section: Culture Residue Bioproduct/bioinput and Process Referencementioning
confidence: 99%
“…Processes such as calcination (Gu et al 2018), hydrodistillation (Tavares et al 2020), lyophilization (Rubio et al 2020), anaerobic anaerobic digestion (Alrefai et al 2020), extraction (Akond and Lynam 2020), fermentation ( Coimbra et al 2021), enzymatic hydrolysis (Corchado-Lopo et al 2021), hydrothermal liquefaction (Cervi et al 2021), saccharification (Marques and Aguiar-Oliveira 2020), transesterification (Khounani et al 2021b) among others, they are difficult to implement due to the great procedural and technological complexity, which requires greater investment, especially in equipment and infrastructure, making it difficult to implement as a strategy for the use of waste in the Extreme South of Bahia. The simplest processes that facilitate implementation in the region are found in other bioproducts, such as soil corrective using orange peel and sugarcane bagasse (Debernardi-Vázquez et al 2020) for composting, biochar using pie castor bean (Silva et al 2021), sunflower seed (Casoni et al 2019), cherry kernel (Pollard and Goldfarb 2021), filter cake and sugarcane molasses (Bernardino et al 2018;, branches, stems, roots and leaves of trees (Martín et al 2017), oat husk (Srivastava et al 2020), baru endocarp/mesocarp (Rambo et al 2020a;Rambo et al 2020b), coffee and cocoa husks (Milian-Luprón et al 2020) obtained by pyrolysis and briquettes using tree branches, trunks, roots and leaves (Nunes et al 2019;Ponte et al 2019), husk from coconut (Nunes et al 2019) and sugarcane bagasse (Ponte et al 2019) through crushing and compaction.…”
Section: Culture Residue Bioproduct/bioinput and Process Referencementioning
confidence: 99%
“…The outlet gas was sampled by a mass spectrometer (Extorr XT Series RGA XT300M) through a fused silica capillary (internal diameter: 40 μm) to measure the toluene concentration at the dominant mass to charge ratio of 91. Proximate analysis to determine the fixed carbon, volatile matter, and inorganic content was performed on a TA Instruments TGA 5500 as described previously 31 . Surface area and porosities were measured via N 2 physisorption at 77 K over a P / P 0 range of 0 to 0.7 on a Micromeritics 3‐Flex using the Brunauer–Emmett–Teller (BET) and t‐plot methods after being degassed for 24 h at 250°C on a Micromeritics Smart VacPrep.…”
Section: Methodsmentioning
confidence: 99%
“…Additionally, significant quantities of cherry pits also come from other areas of the food and distillery industries. In recent years, there have been several studies on the recovery of sour cherry pits [18][19][20]. The oils obtained from cherry pits are recommended for use in cosmetics and cooking due to the presence of fatty acids [19].…”
Section: Introductionmentioning
confidence: 99%