Lignocellulose, as the most abundant type of inedible biomass, is considered as a promising renewable feedstock for making fuels, chemicals, and materials. However, its complex structure makes most of current biorefinery processes suffer from low resource utilization rates, high energy consumption or ill-defined market orientation of the obtained products. Here, we propose and evaluate the EXA (Ethanol, Xylose, Adhesive) biorefinery strategy based on current xylose industry. This process integrates four conversion and separation stages to consecutively produce ethanol, xylose, and adhesive with total carbon utilization of 79.6%. The key innovation is the establishment of an easy-to-operate process for direct production of high-quality adhesive from a lignin-rich liquid fraction that makes the overall process significantly more sustainable. Techno-economic analysis (TEA) shows that the revenue of proposed EXA process increases more than 110 times compares with the current process and life cycle assessment (LCA) demonstrates a much lower CO 2 footprint from an environmental burden per unit of revenue perspective.