The chemical upcycling of plastic wastes by converting them into valuable fuels and chemicals represents a sustainable approach as opposed to landfilling and incineration. However, it encounters challenges in dealing with mixed plastic wastes due to their complex composition and sorting/cleaning costs. Here, we present a one-pot hydrodeoxygenation (HDO) method for converting mixed plastic wastes containing poly-(ethylene terephthalate) (PET), polycarbonate (PC), and poly-(phenylene oxide) (PPO) into sustainable naphthenes under mild reaction conditions. To facilitate this process, we developed a costeffective, contaminant-tolerant, and reusable Ni/HZSM-5 bifunctional catalyst through an ethylene glycol-assisted impregnation method. The metallic Ni site plays a pivotal role in catalyzing C−O and C−C cleavages as well as hydrogenation reactions, while the acidic site of HZSM-5 facilitates dehydration and isomerization reactions. The collaboration between metal and acid dual sites on Ni/HZSM-5 enabled efficient HDO of a wide range of substrates, including bottles, textile fibers, pellets, sheets, CDs/DVDs, and plastics without cleaning or pigments removal and even their various mixtures, into naphthenes with a high yield up to 99% at 250 °C and 4 MPa H 2 within 4−6 h. Furthermore, the metal-acid balance of the Ni/HZSM-5 catalyst is crucial for determining both HDO activity and product distribution. This proposed one-pot HDO process utilizing earth-abundant metal catalysts provides a promising avenue toward practical valorization of mixed plastic wastes.