Background: Valve-in-valve transcatheter aortic valve replacement (ViV-TAVR) is an emerging alternative to re-do surgery. However, the challenge of coronary access (CA) following ViV-TAVR is a potential limitation as TAVR expands to younger lowerrisk populations.Objectives: Using post-implantation computed tomography (CT) scans to evaluate the geometrical relationship between coronary ostia and valve frame in patients undergoing ViV-TAVR with the ACURATE neo valve.Methods: Post-implant CT scans of 18 out of 20 consecutive patients treated with the ACURATE neo valve were analyzed. Coronary ostia location in relation to the highest plane (HP) (highest point of the ACURATE neo or surgical valve) was determined. Ostia located below the highest plan were further subclassified according to the gap available between the transcatheter heart valve frame and ostium (transcatheter-to-coronary [TTC] distance). The impact implantation depth has on these geometrical relationships was evaluated.Results: A total of 21 out of 36 coronary ostia (58%) were located below the level of the HP with the left coronary artery (36%) more likely to be affected than the right (22%). Further sub-classification of these ostia revealed a large (>6 mm), moderate (4-6 mm), and small (<4 mm) TTC distance in 57% (12/21), 38% (8/21), and in 6%(1/18) of cases, respectively. At an implantation depth <4 mm compared to >4 mm, all ostia were located below the HP with no difference in post-procedural mean gra-