Vancomycin, a crucial antibiotic for Gram-positive bacterial infections, requires therapeutic drug monitoring (TDM). Contemporary guidelines advocate for AUC-based monitoring; however, using Bayesian programs for AUC estimation poses challenges. We aimed to develop and evaluate a simplified AUC estimation equation using a steady-state trough concentration (C
trough
) value. Utilizing 1,034 TDM records from 580 general hospitalized patients at a university-affiliated hospital in Ulsan, we created an equation named SSTA that calculates the AUC by applying C
trough
, body weight, and single dose as input variables. External validation included 326 records from 163 patients at a university-affiliated hospital in Seoul (EWUSH) and literature data from 20 patients at a university-affiliated hospital in Bangkok (MUSI). It was compared with other AUC estimation models based on the C
trough
, including a linear regression model (LR), a sophisticated model based on the first-order equation (VancoPK), and a Bayesian model (BSCt). Evaluation metrics, such as median absolute percentage error (MdAPE) and the percentage of observations within ±20% error (P20), were calculated. External validation using the EWUSH data set showed that SSTA, LR, VancoPK, and BSCt had MdAPE values of 6.4, 10.1, 6.6, and 7.5% and P20 values of 87.1, 82.5, 87.7, and 83.4%, respectively. External validation using the MUSI data set showed that SSTA, LR, and VancoPK had MdAPEs of 5.2, 9.4, and 7.2%, and P20 of 95, 90, and 95%, respectively. Owing to its decent AUC prediction performance, simplicity, and convenience for automated calculation and reporting, SSTA could be used as an adjunctive tool for the AUC-based TDM.