2018
DOI: 10.1002/spe.2643
|View full text |Cite
|
Sign up to set email alerts
|

VAnDroid: A framework for vulnerability analysis of Android applications using a model‐driven reverse engineering technique

Abstract: Summary Android is extensively used worldwide by mobile application developers. Android provides applications with a message passing system to communicate within and between them. Due to the risks associated with this system, it is vital to detect its unsafe operations and potential vulnerabilities. To achieve this goal, a new framework, called VAnDroid, based on Model Driven Reverse Engineering (MDRE), is presented that identifies security risks and vulnerabilities related to the Android application communica… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
30
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 25 publications
(32 citation statements)
references
References 31 publications
0
30
0
2
Order By: Relevance
“…Sua desvantagem é a possibilidade dos aplicativos maliciosos esconderem a sua real atividade no arquivo executável através de técnicas de ofuscação, como códigos cifrados, geração de código em tempo de execução, etc. Esse tipo de comportamento só pode ser detectado na análise dinâmica em tempo de execução [Nirumand et al 2018].…”
Section: Análise Estáticaunclassified
“…Sua desvantagem é a possibilidade dos aplicativos maliciosos esconderem a sua real atividade no arquivo executável através de técnicas de ofuscação, como códigos cifrados, geração de código em tempo de execução, etc. Esse tipo de comportamento só pode ser detectado na análise dinâmica em tempo de execução [Nirumand et al 2018].…”
Section: Análise Estáticaunclassified
“…J. Qiu [16] proposed a light-weight solution to automatically identify the Android malicious samples with high security and privacy impact. Nirumand [17] presented a framework based on Model Driven Reverse Engineering. In the proposed framework, some security-related information included in an Android app is automatically extracted and represented as a domain-specific model.…”
Section: Related Workmentioning
confidence: 99%
“…It can also distinguish high-level malware and identify high-risk malware. In contrast, regarding dynamic investigations, fundamental discovery and analysis are performed at runtime (Li et al, 2018;Navarro, Navarro, Grégio, Rocha, & Dahab, 2018;Nirumand, Zamani, & Tork 1 depicts the scenario for problem identification where a user unintentionally gives additional permissions to the android application, which makes the device vulnerable to security attacks.…”
Section: Permission Groupsmentioning
confidence: 99%
“…It can also distinguish high‐level malware and identify high‐risk malware. In contrast, regarding dynamic investigations, fundamental discovery and analysis are performed at runtime (Li et al, 2018; Navarro, Navarro, Grégio, Rocha, & Dahab, 2018; Nirumand, Zamani, & Tork Ladani, 2019; Sharma & Gupta, 2019; Tam, Feizollah, Anuar, Salleh, & Cavallaro, 2017).…”
Section: Introductionmentioning
confidence: 99%