Control over thin film growth (e.g.,
crystallographic orientation
and morphology) is of high technological interest as it affects several
physicochemical material properties, such as chemical affinity, mechanical
stability, and surface morphology. The effect of process parameters
on the molecular organization of perfluorinated polymers deposited
via initiated chemical vapor deposition (iCVD) has been previously
reported. We showed that the tendency of poly(1H,1H,2H,2H-perfluorodecyl
acrylate) (pPFDA) to organize in an ordered lamellar structure is
a function of the filament and substrate temperatures adopted during
the iCVD process. In this contribution, a more thorough investigation
of the effect of such parameters is presented, using synchrotron radiation
grazing incidence and specular X-ray diffraction (GIXD and XRD) and
atomic force microscopy (AFM). The parameters influencing the amorphization,
mosaicity, and preferential orientation are addressed. Different growth
regimes were witnessed, characterized by a different surface structuring
and by the presence of particular crystallographic textures. The combination
of morphological and crystallographic analyses allowed the identification
of pPFDA growth possibilities between island or columnar growth.