A model has been developed to describe the simultaneous diffusion and solvent‐induced crystal formation in polymers based on the idea that crystal formation is governed by polymer chain mobility and a thermodynamic driving force. The polymer chain mobility is described based on solvent and polymer physical characteristics using the free‐volume theory of transport. The semicrystalline polymer‐solvent system is treated as a ternary system consisting of crystalline polymer, amorphous polymer, and solvent. The addition of solvent to the amorphous phase is assumed to increase the local free volume and facilitate movement of polymer chains, thereby enabling crystal formation. Diffusion of the solvent is assumed to occur solely in the amorphous polymer phase. The species continuity equations are formulated in volume‐averaged coordinates and give rise to a convective term due to the density change accompanying transformation of the amorphous polymer to the crystalline polymer. Accurate modeling of this problem requires that a moving boundary be considered. The model was tested using gravimetric sorption data for the poly(vinyl alcohol)‐water system. In the experimental studies, the water was initially absorbed and then a high percentage of it was expelled. The proposed model accurately describes this behavior. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45171.