Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The application of solar-thermal surfaces for antifrosting and defrosting has emerged as a passive and environmentally friendly approach to mitigate the negative consequences of frost formation, such as structural damage and reduced heat transfer efficiency. However, achieving robust all-day frostphobicity solely through interfacial modification and solar-thermal effects is challenging in practical applications: The thick frost that accumulates at night strongly scatters solar radiation, rendering the solar-thermal coatings ineffective during the daytime. Additionally, these nanostructured coatings are susceptible to wear and tear when exposed to the outdoors for extended periods of time. To address these challenges, we present an innovative frostphobic surface that incorporates V-grooved structures with superhydrophobic solar-thermal layers (VSSs). The out-of-plane gradient structures facilitate spatially regulated vapor diffusion, an enhanced photothermal effect, and robust water repellency. These features not only prevent frost from covering the entire surface overnight, enabling effective solar-thermal defrosting during the daytime, but also protect the surface from deterioration. The combined merits ensure robust all-day frostphobicity and exceptional durability, making the VSS surface promising for practical applications and extending the lifespan in extreme environments.
The application of solar-thermal surfaces for antifrosting and defrosting has emerged as a passive and environmentally friendly approach to mitigate the negative consequences of frost formation, such as structural damage and reduced heat transfer efficiency. However, achieving robust all-day frostphobicity solely through interfacial modification and solar-thermal effects is challenging in practical applications: The thick frost that accumulates at night strongly scatters solar radiation, rendering the solar-thermal coatings ineffective during the daytime. Additionally, these nanostructured coatings are susceptible to wear and tear when exposed to the outdoors for extended periods of time. To address these challenges, we present an innovative frostphobic surface that incorporates V-grooved structures with superhydrophobic solar-thermal layers (VSSs). The out-of-plane gradient structures facilitate spatially regulated vapor diffusion, an enhanced photothermal effect, and robust water repellency. These features not only prevent frost from covering the entire surface overnight, enabling effective solar-thermal defrosting during the daytime, but also protect the surface from deterioration. The combined merits ensure robust all-day frostphobicity and exceptional durability, making the VSS surface promising for practical applications and extending the lifespan in extreme environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.