This paper reports an experimental and theoretical study of rapid evaporation of ethanol droplets and kerosene droplets during depressurization. For experimental method, an ethanol droplet or a kerosene droplet was suspended on a thermocouple, which was also used to measure the droplet center temperature transition. And the droplet shape variation was recorded by a high speed camera. A theoretical analysis was developed based on the heat balance to estimate the droplet center temperature transition, and the evaporation model proposed by Abramzon and Sirignano was used to describe the droplet vaporization. According to the experimental data and theoretical analysis, both of the environmental pressure and the initial droplet diameter have a prominent influence on the droplet temperature transition. Comparing the evaporation processes of ethanol droplets and kerosene droplets with water droplets, the ethanol droplets have the fastest evaporation rate, followed by water, and the evaporation rates of kerosene droplets are the