“…temp.neural_weight([[1,2,3],[4,5,6]]) 2 new_weight-temp.neural_memristor_weights() Invoking functions to get corresponding memristance Algorithm 4 Algorithm for implementing mathematical model for memristors in python Start Parameter 1: R of f , R on , R init , Amplitude, frequency, time duration, sample rate, p, j, model #variabilities temp ← memristor_models(P arameters1) #call the main PyMem class Parameter 2: Quantization_value, percentage of variability R on , percentage of variability R of f temp.memristor_with_variability(P arameters2) #setting up the memristor with variability Parameter 3: current_weights #variabilities temp.neural_weight(P arameters3) #changing neural weights to memristor resistance value new_weight ← temp.neural_memristor_weights() #changing neural weights to memristor resistance value Output: new_weight End Python-based implementation for Applying a Mathematical Model to Implement Memristors is mentioned in Algorithm 4. The algorithm starts working by mapping the weight values from the neural network into quantization of G of f (1/R on ) and G of f (1/R of f ) of the ideal memristor.…”