2004
DOI: 10.1515/mamm.2004.030
|View full text |Cite
|
Sign up to set email alerts
|

Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach

Abstract: Pattern recognition algorithms offer a promising approach to recognizing bat species by their echolocation calls. Automated systems like synergetic classifiers may contribute significantly to operator-independent species identification in the field. However, it necessitates the assembling of an appropriate database of reference calls, a task far from trivial. We present data on species specific flexibility in call parameters of all Swiss bat species (except

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

9
124
0
36

Year Published

2013
2013
2017
2017

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 173 publications
(169 citation statements)
references
References 30 publications
9
124
0
36
Order By: Relevance
“…After sunset, echolocation calls were also recorded (Avisoft UltraSoundGate running Avisoft-Recorder software, sampling rate 384 kHz, 16 bit; Avisoft) and later analyzed in Sas Lab Pro. Visual observation, pictures, video records, and voice recordings confirmed observations of noctule bats (Obrist et al, 2004;Walters et al, 2012). Leisler's bats, Nyctalus leisleri, are also present in the region, and can be mistaken for noctule bats (Russo and Jones, 2002;Obrist et al, 2004;Ruczyński et al, 2010).…”
supporting
confidence: 62%
“…After sunset, echolocation calls were also recorded (Avisoft UltraSoundGate running Avisoft-Recorder software, sampling rate 384 kHz, 16 bit; Avisoft) and later analyzed in Sas Lab Pro. Visual observation, pictures, video records, and voice recordings confirmed observations of noctule bats (Obrist et al, 2004;Walters et al, 2012). Leisler's bats, Nyctalus leisleri, are also present in the region, and can be mistaken for noctule bats (Russo and Jones, 2002;Obrist et al, 2004;Ruczyński et al, 2010).…”
supporting
confidence: 62%
“…A fajhatározásnál a legfőbb paraméterek a hanggörbe formája, maximális és minimális frekvenciaértéke, az aktív hangtartomány hossza és a hangimpulzus legerősebb jelének frekvenciaértéke, de ezeken túl több egyéb faj specifikus jellemzőket is vizsgálunk a fajhatározás során. A fajcsoportokra jellemző határozóbélyegeket szakirodalmakból vettük át (Ahlén1981, Ahlén & Baagoe 1999, Barataud 2015, Dietz & Kiefer 2014, Fenton& Bell 1981, Griffin et al 1960, Jones 1999, Obrist et al 2004, Russo & Jones 2002, Vaughan et al 1997, illetve részben saját gyűjtésekre és megfigyelésekre alapoztuk. Az egyes paramétereket a számítógépes programunk olvassa be és a változók segítségével egyezőségi valószínűség lévén azonosítja be a hangokat fajra, fajcsoportra vagy nemzetségre.…”
Section: Az Adatgyűjtés Módszereunclassified
“…Support Vector Machines(SVM) [18][19][20], Artificial Neural Networks(ANN) [21] and Synergetic Pattern Recognition [22] are the frequently used to classify bats. Redgwell et.al.…”
Section: Bat Species Identification Systemsmentioning
confidence: 99%
“…Although these previous studies accurately classify many of the species on which they are trained and prove the concept and value of quantitative call identification, they have not been made publicly accessible and are restricted to a regional(often national) level (eg. Venezuela [8]; Greece; Italy [13]; Meditteranean area [23]; UK [24]; Switzerland [22];). Therefore, they cannot be used to generate comparable classifications at a continental scale [2].…”
Section: Bat Species Identification Systemsmentioning
confidence: 99%
See 1 more Smart Citation