Neural circuit motifs producing coexistent rhythmic patterns are treated as building blocks of multifunctional neuronal networks. We study the robustness of such a motif of inhibitory model neurons to reliably sustain bursting polyrhythms under random perturbations. Without noise, the exponential stability of each of the coexisting rhythms increases with strengthened synaptic coupling, thus indicating an increased robustness. Conversely, after adding noise we find that noise-induced rhythm switching intensifies if the coupling strength is increased beyond a critical value, indicating a decreased robustness. We analyze this stochastic arrhythmia and develop a generic description of its dynamic mechanism. Based on our mechanistic insight, we show how physiological parameters of neuronal dynamics and network coupling can be balanced to enhance rhythm robustness against noise. Our findings are applicable to a broad class of relaxation-oscillator networks, including Fitzhugh-Nagumo and other Hodgkin-Huxley-type networks.