The monitoring and characterization of agricultural products before harvest or during ripening, storage, and shelf life has recently been increasingly explored in the literature. The analysis of biospeckle activity has potential for the determination of the optimal harvest window, the monitoring of the fruit ripening process, and the detection of diseases and bruising. In this technique, the specimen is illuminated with coherent light and speckle intensity fluctuations are analyzed using diverse methodologies. Prior work shows that biospeckle activity is strongly correlated to physiological indexes conventionally used to evaluate fruit texture and composition. Here, we scrupulously investigate the biospeckle activity of Gala apple fruits during postharvest stages. We simulate realistic conditions for shelf-life monitoring, namely an unknown history of the fruit and storage in an uncontrolled atmosphere. Scattering spot images are acquired with multiple exposure times using a simple optical setup. The contrast, reflecting biospeckle activity, is computed after eliminating inhomogeneous zones. The results show, for the first time, speckle activity at short time scales. The retrieved correlations between speckle parameters and the ratio of apples’ firmness to their soluble solids content reveal significant links despite the unknown fruit’s origin, harvest date, and storage history.