Control Charts are the basic tool for quality control. They were developed in the 1920s when the dominant type of production was mass production. In order to properly use classic Control Charts, the data from the manufacturing process should meet the following assumptions: an empirical distribution of measurement data should be normally distributed or close to a normal distribution, measurement data should be independent, the manufacturing process should be capable of quality depending on the type of Control Chart, a sample that is large enough (sometimes made of several elements) must be taken. Currently, a shift can be observed from mass production towards short production runs, which causes the proper use of the traditional approach to be impossible. In recent years, control charts are once again in the spotlight, and consequently many scientists, i.e. Reynolds, Zimmer, Costa, Calvin and Chan have undertaken the task to adapt the classic idea of keeping Control Charts to modern conditions of production. The development of science in this area allows for the avoidance of making major mistakes in the conduct of Control Charts and for making the wrong decisions based on erroneous analysis. However, the appearance of new literature pieces implies the need to classify Control Charts, therefore, this article describes the idea of conduct, the most important assumptions and distribution of classical Shewhart's Control Charts, as well as a suggestion for the distribution of advanced Control Charts that meet the needs of the currently used production types. The work also contains a concise description of the chosen control charts as well as the threats resulting from their inappropriate selection. This elaboration is an extension to the article of Czabak-Górska (2017).