2020
DOI: 10.1109/access.2020.2987912
|View full text |Cite
|
Sign up to set email alerts
|

Variable Pitch Active Disturbance Rejection Control of Wind Turbines Based on BP Neural Network PID

Abstract: When wind speeds are above the rated speed of variable speed variable pitch wind turbines, pitch angles are changed to keep output powers and rotor speeds at their rated values. For wind turbines with nonlinear and complex structure, conventional PID variable pitch controller is difficult to achieve precise control. In this paper, a variable pitch controller combining back-propagation(BP) neural network with PID (BP-PID) is proposed. By real-time detecting the deviation of the rotor speeds, the BP neural netwo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 44 publications
(19 citation statements)
references
References 38 publications
0
18
0
1
Order By: Relevance
“…Por ejemplo, Asghar y Liu en (Asghar y Liu, 2018a) diseñan un algoritmo neuro-difuso para obtener la velocidad óptima del rotor. En (Ren et al, 2020) se aplica una red neuronal combinada con un PID para el control de turbinas. La red neuronal se usa para ajustar los parámetros del PID mientras el sistema está en funcionamiento.…”
Section: Regulación Directa De Pitch Con Redes Neuronalesunclassified
“…Por ejemplo, Asghar y Liu en (Asghar y Liu, 2018a) diseñan un algoritmo neuro-difuso para obtener la velocidad óptima del rotor. En (Ren et al, 2020) se aplica una red neuronal combinada con un PID para el control de turbinas. La red neuronal se usa para ajustar los parámetros del PID mientras el sistema está en funcionamiento.…”
Section: Regulación Directa De Pitch Con Redes Neuronalesunclassified
“…Then, according to the incremental PID principle [31], the output of IMCPID controller can be written as:…”
Section: Imcpidnn Controller Designmentioning
confidence: 99%
“…However, the design of the control law is complicated and there are many control parameters to be tuned. Ren et al [ 24 ] proposed a back-propagation PID with based on a nonlinear ESO to achieve precise control of wind turbines. The method proposed in [ 24 ] used a neural network to optimize only the parameters of the PID, but did not optimize the parameters of the active disturbance rejection controller, which is detrimental to improving the control performance of the system.…”
Section: Introductionmentioning
confidence: 99%
“…Ren et al [ 24 ] proposed a back-propagation PID with based on a nonlinear ESO to achieve precise control of wind turbines. The method proposed in [ 24 ] used a neural network to optimize only the parameters of the PID, but did not optimize the parameters of the active disturbance rejection controller, which is detrimental to improving the control performance of the system. In addition, the larger gains of ADRC will amplify noise, which may reduce control performance.…”
Section: Introductionmentioning
confidence: 99%