2022
DOI: 10.48550/arxiv.2211.00114
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Variable Selection for Multiply-imputed Data: A Bayesian Framework

Abstract: Multiple imputation is a widely used technique to handle missing data in large observational studies. For variable selection on multiply-imputed datasets, however, if we conduct selection on each imputed dataset separately, different sets of important variables may be obtained. MI-LASSO, one of the most popular solutions to this problem, regards the same variable across all separate imputed datasets as a group of variables and exploits Group-LASSO to yield a consistent variable selection across all the multipl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?