The strong need for high cycle fatigue mitigation has resulted in numerous techniques resulting in added weight, increased operational costs, and lower performance. The experimental investigation presented was a foundational effort towards mitigating HCF through the use of shape memory alloy in a composite system. The research objective was to quantify changes in eigenvalue, eigenvector, and amplitude of a vibrating cantilever beam with a thin SMA topical treatment; as quantified during SMA phase transformations and through comparison with a control. A composite beam consisting of a nitinol thin SMA foil adhered to an Aluminum Alloy 6061 substrate was designed and fabricated. The three configurations were utilized: (1) a full-span SMA treatment designed for maximum eigenvalue shift and maximum amplitude reduction, (2) a half-span SMA treatment designed for eigenvector shift, and (3) a full-span aluminum treatment for a control. Through a complete modal analysis, results illustrated that thin foil SMA treatments led to a significant shift in eigenvalue, up to 6.53%. Highlighting the reduction in amplitude was a 92% reduction in amplitude at second bending with constant excitation frequency with the full-span sample. Spanwise scans on the half-span sample with and without SMA actuation illustrated a 0.77% shift in node location.