2022
DOI: 10.3390/en15114067
|View full text |Cite
|
Sign up to set email alerts
|

Variable Support Segment-Based Short-Term Wind Speed Forecasting

Abstract: Accurate short-term wind speed forecasting plays an important role in the development of wind energy. However, the inertia of airflow means that wind speed has the properties of time variance and inertia, which pose a challenge in the task of wind speed forecasting. We employ the variable support segment method to describe these two properties. We then propose a variable support segment-based short-term wind speed forecasting model to improve wind speed forecasting accuracy. The core idea is to adaptively dete… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 32 publications
0
2
0
1
Order By: Relevance
“…This section provides a summary of this Special Issue of Energies, covering published articles [1][2][3][4][5][6][7][8][9][10] which address several topics related to AI technologies in power system performance monitoring.…”
Section: Highlights Of Published Papersmentioning
confidence: 99%
See 1 more Smart Citation
“…This section provides a summary of this Special Issue of Energies, covering published articles [1][2][3][4][5][6][7][8][9][10] which address several topics related to AI technologies in power system performance monitoring.…”
Section: Highlights Of Published Papersmentioning
confidence: 99%
“…Finally, in [10], Zhang et al constructed a short-term wind speed prediction model based on variable support segments (VSS). At first, the method decomposes the historical wind speed series into several components using the variational mode decomposition method.…”
Section: Highlights Of Published Papersmentioning
confidence: 99%
“…Одним из таких источников является ветер. Скорость и направление ветра невозможно предсказать с высокой точностью на длительный период времени, хотя для выявления этих данных и существуют многочисленные методики: численное прогнозирование погоды (NWP модели) [1,2]; использование статистических моделей [1,2]; метод фильтров Калмана [2]; с помощью интегрированной модели авторегрессии (скользящего среднего) для анализа временных рядов ARIMA и ее разновидностей [2]; с помощью сети Байеса [2]; использование нечеткой системной модели [1,2]; использование нейронных сетей [1,2]; комбинированная модель, основанная на модифицированной модели Трансформера и вариационных методах разложения [3,4]; метод выбора характеристик с помощью пакета Boruta при машинной обработке данных [5] и др. В связи с этим затрудняется прогнозирование генерации электрической энергии ветроэнергетическими установками (ВЭУ).…”
Section: введение (Introduction)unclassified