Low catch limits for forage species are often considered to be precautionary measures that can help conserve marine predators. Difficulties measuring the impacts of fisheries removals on dependent predators maintain this perspective, but consideration of the spatio-temporal scales over which forage species, their predators, and fisheries interact can aid assessment of whether low catch limits are as precautionary as presumed. Antarctic krill are targeted by the largest fishery in the Southern Ocean and are key forage for numerous predators. current krill removals are considered precautionary and have not been previously observed to affect krill-dependent predators, like penguins. Using a hierarchical model and 30+ years of monitoring data, we show that expected penguin performance was reduced when local harvest rates of krill were ≥0.1, and this effect was similar in magnitude to that of poor environmental conditions. With continued climate warming and high local harvest rates, future observations of penguin performance are predicted to be below the long-term mean with a probability of 0.77. Catch limits that are considered precautionary for forage species simply because the limit is a small proportion of the species' standing biomass may not be precautionary for their predators.To conserve large fishes, seabirds, and marine mammals, many stakeholders advocate precautionary management of fisheries that target forage species (e.g., krill, anchovies, and sardines). One strategy to conserve predators is to reserve some proportion of their prey 1 , perhaps by establishing a low catch limit for the fisheries that target the forage populations or stocks 2 . However, fishing activities may concentrate where target species are profitably caught, potentially increasing local harvest rates above intended levels 3 . If management fails to prevent concentrated fishing where dependent predators forage, these predators may be impacted despite a low overall catch limit. From an ecosystem perspective, the level of precaution implied by a low catch limit may be better-assessed relative to the time and space scales over which forage species, their predators, and fisheries interact.Assessing whether catch limits are precautionary from an ecosystem perspective is challenging because the impacts of forage-fish fisheries on predators are difficult to measure 4-6 . This difficulty arises because predators respond to many drivers, including environmental conditions and food-web interactions that are modulated by competition and responses to the availability of alternative prey. Reducing uncertainty to draw unambiguous inference about fisheries impacts on predators requires data that disentangle the effects of fishing from those of the environment and match the temporal and spatial scales of predator life histories, predator-prey interactions, and fishery catches. Data of this nature may not be available at the broad scale of the forage stock, but may be so on smaller scales. Experimental approaches to estimate the effects of fishing are...